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Abstract
We study the motion of a vortex–antivortex pair in easy-plane ferromagnets
crossing an interface between two media with different anisotropy. A simple
description based on the Thiele approach is obtained. The collective variables
are the vortex centres and core radii, the latter are assumed to be slaved
to the former. For a normal crossing of the interface by the vortex pair, a
simple estimate of the ratio of the separation distances is obtained from energy
conservation. This prediction is validated by direct numerical simulations of
the Landau–Lifshitz equations for the anisotropic Heisenberg model, on a spin
lattice divided into two regions which have different anisotropies.

PACS numbers: 75.10.Hk, 75.30.Gw, 75.40.Mg

1. Introduction

Vortices, which can be described, e.g. as phase singularities of a complex field, occur in many
areas of physics. The most familiar ones occur in hydrodynamics where they have been
studied for many years [1, 2]. A more recent example concerns optical vortices [3] which
can be described using a Ginzburg–Landau type amplitude equation. The motion of electrons
in a superconductor is governed by a similar model [4] and can also display such structures.
Finally, 2D magnetic systems described by a Heisenberg spin Hamiltonian are among the first
in condensed matter physics where vortices have been studied systematically [5].

The main ingredient to obtain a vortex solution is a field equation that reduces in some
limit to a Laplacian yielding the energy density (∇φ)2 where φ is the phase. A vortex is then
very close to an elementary charge in electrostatics. In 2D the Green’s function is φG = log(r)
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which gives rise to divergences for both r → 0 and r → ∞. In reality the singularity at r = 0
is ‘regularized’ by an additional short-range field to form a finite vortex core, an example is the
density variation in a superfluid model [4]. The logarithmic divergence for large r, however,
remains so that a single vortex has infinite energy in an infinite system and therefore cannot
move. If, however, it is associated with an antivortex (to form the equivalent of a dipole) then
the energy of the pair is finite and motion occurs. Because of its topology such a vortex pair
can be naturally formed in a vacuum, in contrast to a single vortex. A good illustration is the
vortex ring—the 3D equivalent of a vortex pair—created by an object falling in a liquid [7].

A natural question to ask is what happens to such a vortex pair when it encounters
inhomogeneities of the material. Here we consider the case of an interface between two media
of different properties. We will illustrate this in the case of a two-dimensional easy-plane
ferromagnet, described by the Heisenberg exchange Hamiltonian with anisotropic coupling
of the vertical z-components m of the spins. The orientation of the spins can be parametrized
by the azimuthal phase φ and by m, where m is the field ‘regularizing’ the vortex core. The
radius of the core depends on the anisotropy of the material. This is the property that we will
change from one side of the interface to the other.

A simplified model of the motion of a vortex pair in this system is obtained assuming
a travelling frozen field where the time dependence enters only through the vortex centres
Ri(t), i = 1, 2 [6]. In this context, this collective coordinate approach is called the Thiele
approximation [8, 9]. Here we extend it to the case of an inhomogeneous material by
introducing as an additional variable the core size κi of each vortex. To simplify the description
we assume this variable to be slaved to the position Ri .

To our knowledge this is a first attempt to describe the motion of a magnetic vortex–
antivortex pair across an interface between two materials. To keep things simple we present
here only the case of normal incidence of the vortex pair upon the interface. After introducing
the general Hamiltonian for the inhomogeneous Heisenberg system, we present the collective
coordinate approach in section 2. In section 3 we describe the solution in the case of a vortex
pair impinging normally on an interface and compare it to that obtained by direct simulation
of the spin equations in section 4. We conclude in section 5.

2. Hamiltonian and equations of motion

We consider the classical two-dimensional Heisenberg easy-plane ferromagnet with spatially
inhomogeneous uniaxial anisotropy. On a square lattice the Hamiltonian of the system has the
form

H = −1

2
J

∑
(�n,�a)

( �S�n · �S�n+�a) +
1

2

∑
�n

K�n
(
Sz

�n
)2

(1)

where �S�n ≡ (
Sx

�n ,Sy

�n ,Sz
�n
)

is the classical spin variable on the site �n, the exchange integral,
J , and the anisotropy constant, K�n, are positive. In the first term �a is the lattice vector so
that the summation runs over nearest-neighbour pairs. The spin motion is governed by the
Landau–Lifshitz equations, which in normalized form can be written as

d �S�n
dt

= − �S�n × ∂H
∂ �S�n

= �S�n ×
{

J
∑

�a
�S�n+�a − K�nSz

�nẑ

}
. (2)

These equations conserve the length of the spins | �S�n| ≡ S, which has units of action for the
classical and quantum models.
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We shall consider the case of weak anisotropy K�n � J when the characteristic size of
excitations

√
J/K is larger than the lattice constant a (= 1). In this case we can use the

continuum approximation of the Hamiltonian (1)

H = 1

2

∫
d�r{(∂x

�S)2 + (∂y
�S)2 + K(�r)(Sz)2} (3)

where H = H−H0
JS2 ,H0 is a constant, the spin length has been rescaled so that �S = �S/S, and

K ≡ K
Ja2 � 1. In this continuum approximation the Landau–Lifshitz equation becomes

1

JS
d �S
dt

= −�S × δH

δ �S = �S × {� �S − K(�r)Szẑ}. (4)

The denominator JS, with units of inverse time, can be absorbed into a dimensionless time
variable. Again equation (4) preserves the length of the spins so it is convenient to parametrize
the vector �S(�r, t) with two variables, the in-plane phase φ(�r, t) and the on-site magnetization
m(�r, t) ≡ Sz(�r, t). The magnetization m(�r, t) and the phase φ(�r, t) satisfy the Hamiltonian
equations

φ̇ = δH

δm
ṁ = −δH

δφ
(5)

so that they are canonically conjugate. In terms of these variables the Hamiltonian (3) is

H = 1

2

∫
d�r

{
(∇m)2

1 − m2
+ (1 − m2)(∇φ)2 + K(�r)m2

}
. (6)

Before describing the collective variable approach for a vortex pair we recall briefly
that the structure of a single static vortex in the homogeneous case is the pair of functions
(m, φ) = (f (r

√
K), q�(�r)) that satisfy equations (5). A vortex has topological charge q = 1

while q = −1 for an antivortex. Away from the vortex centre (assumed for the moment at
�r = �R = 0) the field �(�r, t) is proportional to the polar angle ϕ (x = r cos ϕ, y = r sin ϕ)

and has the form

� = arctan
(y

x

)
. (7)

The field m(�r) ‘regularizes’ the vortex at the core so that

m(0) = p m(r) → 0 r → ∞
where p = ±1 is the so-called polarity of the vortex. The polarity is a constant of motion
(and thus a second topological charge) only in the continuum limit. In the discrete spin model
p can change during the movement and can flip between its two extreme values ±1 under the
action of thermal noise [13] or a rotating in-plane magnetic field [14]. The magnetization
field is easier to study by rescaling distances ρ = r

√
K and introducing the new field θ by

m = f (ρ) = cos(θ(ρ)), which satisfies the equation

1

ρ

d

dρ

(
ρ

d2θ

dρ

)
+

(
1 − 1

ρ2

)
sin(2θ) = 0. (8)

The θ field has the following asymptotic behaviour θ = aρ(1 − ρ2/8) for ρ → 0 and
θ = π/2 − b

√
π
2ρ

e−ρ/2 for ρ → ∞ so that we obtain for the magnetization m

f = 1 − aρ2 ρ → 0 f = b
e−ρ

√
ρ

ρ → ∞. (9)
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To describe a vortex pair it is then natural to follow a superposition principle for φ and
assume the following ansatz for the fields:

m(�r, t) =
∑
i=1,2

mi ≡
∑
i=1,2

f (κi(t)|�r − �Ri(t)|)

φ(�r, t) =
∑
i=1,2

φi ≡
∑
i=1,2

qi�(�r − �Ri(t))
(10)

where �Ri(t) is the position of the centre and κi(t) the inverse width of the out-of-plane
component of the ith vortex with the topological charge qi (q1 = −q2 = 1). κi will depend in
general on the anisotropy and below we will show how. We will also assume that the vortices
are well separated from each other so that the mi fields do not overlap.

Inserting equations (10) into equation (6) we obtain the energy of the vortex–antivortex
pair up to a constant as (see the appendix)

W = 2π ln(
√

κ1κ2| �R1 − �R2|) + U(κ1, �R1) + U(κ2, �R2) (11)

where the first term describes the vortex–antivortex interaction while

U(κ, �R) = 1

2

∫
d�rK(�r)f 2(κ |�r − �R|) (12)

is the magnetic anisotropy energy in a single-vortex state. Note that we have assumed the
vortices to be well separated and neglected the additional interaction term between them
due to the spatial dependence of the anisotropy parameter K(�r). This is valid because the
out-of-plane component m of the vortex decays exponentially [6].

From expression (12) one can build a collective variable approach for the dynamics of
one vortex in the Thiele approach [6]. In the homogeneous case, inserting a one-vortex ansatz
in the Hamiltonian (6) and integrating over the domain (assumed here finite) one obtains the
Thiele equation for a single vortex as [9]

�G × �̇R = ∂

∂ �RU.

This can also be obtained from the Lagrangian

L = 1
2

�G · ( �̇R × �R) − U( �R)

where �G is the gyrocoupling vector and U is the energy of the single vortex [14].
It is then natural to describe the dynamics of a vortex pair in the inhomogeneous case by

the Lagrangian

L = 1

2

∑
i=1,2

�Gi · ( �̇Ri × �Ri) − W (13)

and the associated Thiele equations

�Gi × �̇Ri = ∂

∂ �Ri

W.

In the case under consideration, �Gi = 2πqipi �ez where qi is the topological charge of the ith
vortex and pi is its polarity. We will consider the case when p1 = p2 = 1.

Note that the Thiele approximation in its proper sense corresponds to the assumption that
the shape of the vortex is rigid (see, however, [6, 12] where extensions of the Thiele approach
were proposed). We relax this condition by considering the width of each vortex κi to be
slaved to the position of the centre �Ri . This means that in the Lagrangian we omit the kinetic
energy term for the width variables, assuming that their time dependence is determined by
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their associated vortex positions. From the Lagrangian (13) we obtain that the dynamics of
the vortex–antivortex pair is governed by the following set of equations:

�Gi × �̇Ri = ∂

∂ �Ri

W (14)

π

κi

+
∂

∂κi

U(κi, �Ri) = 0 i = 1, 2. (15)

3. Vortex–antivortex propagation across an interface

We consider here a system with a one-dimensional interface separating two 2D media of
anisotropy KL on the left and KR on the right, so that K can be written as

K(�r) ≡ K(x) = (KR − KL)H(x) + KL (16)

where H(x) is the Heaviside function. We will consider the particular case of normal incidence
of the vortex–antivortex pair with respect to the interface. It is seen from equations (14) and
(15) that if X1 = X2 at initial time t = t0, then this equality holds for all t and the dynamics
of the vortex–antivortex pair is described by the equations

Ẋ = 1

Y
Ẏ = − 1

π

∂

∂X
U(κ,X) (17)

π

κ
+

∂

∂κ
U(κ,X) = 0 (18)

where

X ≡ X1 = X2 Y = Y1 − Y2 κ ≡ κ1 = κ2.

Before analysing in detail the equations of motion it is useful to make some remarks
using the energy of the system. Let us consider the two limiting cases where the vortex pair
is well inside the medium to the left (respectively the right) of the interface so that K = KL

(respectively K = KR). In the first case we obtain

U(κ,X) = π

κ2
KL

where we have taken into account (see e.g. [10])

2π

∫ ∞

0
cos2(θ(r))r dr = π.

The evolution equation (18) for κ then yields

κ2 = KL.

Away from the interface the vortex separation is constant Y = YL as given by (17). The total
energy of the vortex pair can then be written as

WL = 2π log(κLYL) + π = 2π log(
√

KLYL) + π. (19)

The same considerations done when the vortex pair is well inside the medium to the right of
the interface give

WR = 2π log(κRYR) + π = 2π log(
√

KRYR) + π. (20)

The system is Hamiltonian so that WL = WR and therefore

YR = YL

√
KL

KR

. (21)

Note that this result holds independently of the profile K(x) as long as K(x) = KL

(respectively K(x) = KR) for x → −∞ (respectively x → +∞).
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Figure 1. Trajectories of the centres of two vortex (q = 1, upper lines)–antivortex (q = −1, lower
lines) pairs (one pair is in dashed lines, the larger pair is in solid lines), both vortices of a pair
with positive polarization (p = 1), while crossing an interface (the vertical line at the centre of the
system, whose diameter is L = 200). In the top panel the anisotropy changes from KL = 0.16
on the left to KR = 0.06 on the right. These settings are reversed in the bottom panel. The grid
of points represents the lattice sites. The trajectories shown consist of points separated by a time
interval δt = 0.8, which does not allow them to be resolved as separated points.

4. Numerical results

We have numerically integrated the full set of Landau–Lifshitz equations (2) over square
lattices of sizes N2 = 1202 and 2002 using a fourth-order Runge–Kutta scheme with time
step 0.01. Each lattice is bounded by a circle of diameter L = N on which the spins are
free. This corresponds to Neumann boundary conditions in the continuum case and causes
the presence of image vortices. We have made the domains so large in order to minimize their
influence on the vortex pair. The anisotropy constant is KL in the left half of the circle and KR

in the right half with a vertical interface separating the two media. We have fixed the exchange
constant J = 1, the spin length S = 1, as well as the lattice constant a = 1, so that we can
use the notation KL and KR for the anisotropy constants instead of KL and KR .

To gain time the evaluation of the right-hand side and the time advance of the field were
parallelized using OpenMP directives embedded in the Fortran code. A typical run of 10 000
steps takes about 1 h on four processors on a Silicon Graphics Origin 2000 machine with 64
RS10000 processors.

As the initial condition we used a vortex–antivortex pair moving horizontally towards the
interface and tested several inter-vortex distances. This inter-vortex distance has to be on one
hand much smaller than the size of the system in order to avoid the influence of images and
on the other hand large enough to avoid overlapping of the out-of-plane structures of the two
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Figure 2. Plot of (YR/YL) as a function of KL/KR for different situations of vortex pairs impinging
on an interface. The full curve shows the expression given by (21).

vortices before or after the pair has crossed the interface. We have studied mainly the system
of diameter L = 200, for which the first condition was fulfilled and confirmed the second by
examining the m field contour plots of the vortices. Before starting the integration a relaxation
procedure was applied to adapt the vortex pair to the lattice. The position of the vortex centre
is calculated using an interpolation. The details of the relaxation and the estimation of the
centre can be found in the appendix of [12].

For most of the simulations, the values of anisotropy on both sides of the lattice were in
the range 0.06 � K � 0.18. In figure 1 typical events are shown, where the vortex–antivortex
pair crosses an interface with KL = 0.16 and KR = 0.06.

Figure 2 shows (YR/YL)
√

(KL/KR) as a function of KL/KR for different numerical
experiments and gives a good agreement with the approximation (21). There is, however, a
systematic bias so that YR is always overestimated. The reason for this is that at the sharp
interface spin waves are generated which are not taken into account by the collective coordinate
theory. In practice, this will always cause WL > WR and the mismatch increases with the
ratio KL/KR .

5. Conclusion

We have described quantitatively the influence of an interface on the distance between a
vortex and an antivortex in a vortex pair. After the pair crosses the interface, the separation

YR is given very simply by YR = YL

√
KL

KR
, where YL is the initial separation when the pair

is in the left medium and KL (respectively KR) is the anisotropy of the left (respectively
right) medium. The model relies on a collective variable approximation where the vortex
structure is assumed rigid and depends on time only through the positions Ri and core
sizes κi of the individual components. In addition, we assume the core size to be slaved
to the position Ri . Detailed comparisons were made using the numerical solutions of the
Landau–Lifshitz equations obtained from (1), giving very good agreement with our simple
expression.

A detailed study of the motion in order to predict the time evolution of the vortex centres
is more involved because one needs to solve the differential algebraic system of equations (14),
(15). We plan to do this in the near future.
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The effect shown here for local anisotropy can also be observed for the case of exchange
anisotropy where the second term of the Hamiltonian (1) is replaced by

+
J

2

∑
(�n,�a)

δ�n
(
Sz

�n · Sz
�n+�a

)
where 0 < δ�n � 1. The ratios of the distances YR/YL are again given by (21) with λ = 1 − δ

in place of K. This is to be expected from the fact that both systems have approximately the
same continuum limit.

The effect described is very general and we expect to find the same type of phenomenon for
vortices in other contexts, as long as the material properties that are changed at the interfaces
only affect the vortex core as in the case described here.
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Appendix. Energy for the vortex–antivortex pair

We call H1,H2 and H3 the three terms of H and evaluate each of them using the ansatz (10).
We assume that the vortex pair is well separated so that the two out-of-plane structures m1,2

do not overlap. To simplify the notation we will use underscores for partial derivatives.
The first term is

H1 = 1

2

∫
d�r (∇m)2

1 − m2
≈

∑
i=1,2

1

2

∫
d�r (∇mi)

2

1 − m2
i

= 2π

∫ ∞

0
dρ ρ(θρ)

2.

The second term in the Hamiltonian involves the long-range fields φ and we calculate it
first over a large but finite domain of size L,

H2 = 1

2

∫
d�r(1 − m2)(∇φ)2 ≈

∑
i=1,2

1

2

∫
d�r (

1 − m2
i

)
(∇φi)

2 +
∫

d�r(∇φ1)(∇φ2).

Each term in the sum can be written as
1

2

∫
d�r(1 − m2

i

)
(∇φ1)

2 ≈ π log(κiL) + H 0
2

where

H 0
2 =

∫ ∞

0
dρ

sin2(θ)

ρ
−

∫ ∞

1
dρ

cos2(θ)

ρ
.

To compute the last term, we take the first vortex as the origin and write R = |R1 − R2|. We
obtain∫

d�r(∇φ1)(∇φ2) = q1q2

∫ 2π

0
dψ

∫ r

0
dr

r2 − rR cos(ψ)

r2 + R2 − 2rR cos(ψ)
= 2πq1q2 log

(
L

R

)
.

Finally

H2 = 2πq1q2 log

(
L

|R1 − R2|
)

+ π log(κ1L) + π log(κ2L) + 2H 0
2
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and we recover a finite energy for L → +∞ for a vortex–antivortex pair q1q2 = −1

H2 = 2π log(
√

κ1κ2|R1 − R2|)
where we omitted the constant term 2H 0

2 , a well-known result for the case κ1 = κ2 [11].
The last term can be approximated as

H3 = 1

2

∫
d�rK(�r)m2 ≈

∑
i=1,2

1

2

∫
d�rK(�r)m2

i =
∑
i=1,2

U(κi, �Ri)

where

U(κ, �R) = 1

2κ2

∫
d�ρf 2(ρ)K

(
�ρ + κ �R

κ

)
.

Combining H1,H2 and H3 we obtain the reduced Hamiltonian (11).
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